Interface

Exported functions

groebner
fn

groebner(polynomials; options...)

Computes a Groebner basis of the ideal generated by polynomials.

Arguments

  • polynomials: an array of polynomials. Supports polynomials from AbstractAlgebra.jl, Nemo.jl, and DynamicPolynomials.jl.

Returns

  • basis: an array of polynomials, a Groebner basis.

Possible Options

  • reduced: A bool, if the returned basis must be autoreduced and unique. Default is true.

  • ordering: Specifies the monomial ordering. Available monomial orderings are:

    • InputOrdering() for inferring the ordering from the given polynomials (default),

    • Lex(args...) for lexicographic,

    • DegLex(args...) for degree lexicographic,

    • DegRevLex(args...) for degree reverse lexicographic,

    • WeightedOrdering(args...) for weighted ordering,

    • ProductOrdering(args...) for block ordering,

    • MatrixOrdering(args...) for matrix ordering.

    For details and examples see the corresponding documentation page.

  • certify: A bool, whether to certify the obtained basis. When this option is false, the algorithm is randomized and the result is correct with high probability. When this option is true, the result is guaranteed to be correct in case the ideal is homogeneous. Default is false.

  • linalg: A symbol, linear algebra backend. Available options are:

    • :auto for the automatic choice (default),

    • :deterministic for deterministic sparse linear algebra,

    • :randomized for probabilistic sparse linear algebra.

  • threaded: The use of multi-threading. Available options are:

    • :auto for the automatic choice (default),

    • :no never use multi-threading,

    • :yes allow the use of multi-threading.

    Additionally, it is possible to set the environment variable GROEBNER_NO_THREADED to 1 to disable all multi-threading in Groebner.jl. In this case, the environment variable takes precedence over the threaded option.

  • monoms: Monomial representation used in the computations. Available options are:

    • :auto for the automatic choice (default),

    • :dense for classic dense exponent vectors,

    • :packed for packed representation.

  • modular: Modular computation algorithm. Only has effect when computing basis over rational numbers. Available options are:

    • :auto for the automatic choice (default),

    • :classic_modular for the classic multi-modular algorithm,

    • :learn_and_apply for the learn & apply algorithm.

  • seed: The seed for randomization. Default is 42.

  • homogenize: Controls the use of homogenization in the algorithm. Available options are:

    • :auto, for the automatic choice (default).

    • :yes, always homogenize the input ideal,

    • :no, never homogenize the input ideal,

Example

Using DynamicPolynomials.jl:

using Groebner, DynamicPolynomials
@polyvar x y
groebner([x*y^2 + x, y*x^2 + y])

Using AbstractAlgebra.jl:

using Groebner, AbstractAlgebra
R, (x, y) = QQ["x", "y"]
groebner([x*y^2 + x, y*x^2 + y])

Using Nemo.jl:

using Groebner, Nemo
R, (x, y) = GF(2^30+3)["x", "y"]
groebner([x*y^2 + x, y*x^2 + y])

Or, say, in another monomial ordering:

# lex with y > x
groebner([x*y^2 + x, y*x^2 + y], ordering=Lex(y, x))

# degree reverse lexicographic
groebner([x*y^2 + x, y*x^2 + y], ordering=DegRevLex())

Notes

  • The function is thread-safe.

  • For AbstractAlgebra.jl and Nemo.jl, the function is most efficient for polynomials over GF(p), Native.GF(p), and QQ.

  • The default algorithm is probabilistic (with certify=false). Results are correct with high probability, however, no precise bound on the probability is known.

groebner_with_change_matrix
fn

groebner_with_change_matrix(polynomials; options...)

Computes a Groebner basis of the ideal generated by polynomials and emits a change matrix, that is, a map from the original generators to basis elements.

Arguments

  • polynomials: an array of polynomials. Supports polynomials from AbstractAlgebra.jl, Nemo.jl, and DynamicPolynomials.jl. For AbstractAlgebra.jl and Nemo.jl, coefficients of polynomials must belong to GF(p), Native.GF(p), or QQ.

Returns

Returns a tuple (basis, matrix).

  • basis: an array of polynomials, a Groebner basis.

  • matrix: a matrix, so that matrix * polynomials == basis.

Possible Options

Same as for groebner.

Example

Using AbstractAlgebra.jl:

using Groebner, AbstractAlgebra
R, (x, y) = QQ["x", "y"]
f = [x*y^2 + x, y*x^2 + y]

g, m = groebner_with_change_matrix(f, ordering=DegRevLex())

@assert isgroebner(g, ordering=DegRevLex())
@assert m * f == g

Notes

  • Only DegRevLex ordering is supported.

  • The function is thread-safe.

  • The default algorithm is probabilistic (with certify=false). Results are correct with high probability, however, no precise bound on the probability is known.

isgroebner
fn

isgroebner(polynomials; options...)

Checks if polynomials forms a Groebner basis.

Arguments

  • polynomials: an array of polynomials. Supports polynomials from AbstractAlgebra.jl, Nemo.jl, and DynamicPolynomials.jl.

Returns

  • flag: a bool, whether polynomials is a Groebner basis of the ideal generated by polynomials.

Possible Options

  • ordering: Specifies the monomial ordering. Available monomial orderings are:

    • InputOrdering() for inferring the ordering from the given polynomials (default),

    • Lex() for lexicographic,

    • DegLex() for degree lexicographic,

    • DegRevLex() for degree reverse lexicographic,

    • WeightedOrdering(weights) for weighted ordering,

    • ProductOrdering(args...) for block ordering,

    • MatrixOrdering(matrix) for matrix ordering.

    For details and examples see the corresponding documentation page.

  • certify: a bool, whether to use a deterministic algorithm. Default is false.

  • seed: The seed for randomization. Default value is 42.

Example

Using DynamicPolynomials:

using Groebner, DynamicPolynomials
@polyvar x y;
isgroebner([x*y^2 + x, y*x^2 + y])

Using AbstractAlgebra:

using Groebner, AbstractAlgebra
R, (x, y) = QQ["x", "y"]
isgroebner([x*y^2 + x, y*x^2 + y])

Notes

  • The function is thread-safe.

  • For AbstractAlgebra.jl and Nemo.jl, the function is most efficient for polynomials over GF(p), Native.GF(p), and QQ.

  • The default algorithm is probabilistic (with certify=false). Results are correct with high probability, however, no precise bound on the probability is known.

normalform
fn

normalform(basis, to_be_reduced; options...)

Computes the normal form of polynomials to_be_reduced with respect to a Groebner basis basis.

Arguments

  • basis: an array of polynomials, a Groebner basis. Supports polynomials from AbstractAlgebra.jl, Nemo.jl, and DynamicPolynomials.jl.

  • to_be_reduced: either a single polynomial or an array of polynomials. Supports polynomials from AbstractAlgebra.jl, Nemo.jl, and DynamicPolynomials.jl.

Returns

  • reduced: either a single polynomial or an array of polynomials, the normal forms.

Possible Options

  • check: Check if basis forms a Groebner basis. Default is true.

  • ordering: Specifies the monomial ordering. Available monomial orderings are:

    • InputOrdering() for inferring the ordering from the given polynomials (default),

    • Lex() for lexicographic,

    • DegLex() for degree lexicographic,

    • DegRevLex() for degree reverse lexicographic,

    • WeightedOrdering(weights) for weighted ordering,

    • ProductOrdering(args...) for block ordering,

    • MatrixOrdering(matrix) for matrix ordering.

    For details and examples see the corresponding documentation page.

Example

Fining the normal form a single polynomial:

using Groebner, DynamicPolynomials
@polyvar x y;
normalform([y^2 + x, x^2 + y], x^2 + y^2 + 1)

Or, reducing two polynomials at a time:

using Groebner, DynamicPolynomials
@polyvar x y;
normalform([y^2 + x, x^2 + y], [x^2 + y^2 + 1, x^10*y^10])

Notes

  • The function is thread-safe.

  • For AbstractAlgebra.jl and Nemo.jl, the function is most efficient for polynomials over GF(p), Native.GF(p), and QQ.

  • The default algorithm is probabilistic (with certify=false). Results are correct with high probability, however, no precise bound on the probability is known.

leading_ideal
fn

leading_ideal(polynomials; options...)

Returns generators of the ideal of the leading terms.

If the input is not a Groebner basis, computes a Groebner basis.

Arguments

  • polynomials: an array of polynomials. Supports polynomials from AbstractAlgebra.jl, Nemo.jl, and DynamicPolynomials.jl.

Returns

  • basis: the basis of the ideal of the leading terms.

Possible Options

  • ordering: Specifies the monomial ordering. Available monomial orderings are:

    • InputOrdering() for inferring the ordering from the given polynomials (default),

    • Lex() for lexicographic,

    • DegLex() for degree lexicographic,

    • DegRevLex() for degree reverse lexicographic,

    • WeightedOrdering(weights) for weighted ordering,

    • ProductOrdering(args...) for block ordering,

    • MatrixOrdering(matrix) for matrix ordering.

    For details and examples see the corresponding documentation page.

Example

Using AbstractAlgebra.jl:

using Groebner, Nemo
R, (x, y) = QQ["x", "y"]
leading_ideal([x*y^2 + x, y*x^2 + y])

Notes

  • The function is thread-safe.

  • For AbstractAlgebra.jl and Nemo.jl, the function is most efficient for polynomials over GF(p), Native.GF(p), and QQ.

dimension
fn

dimension(polynomials; options...)

Computes the (Krull) dimension of the ideal generated by polynomials.

If input is not a Groebner basis, computes a Groebner basis.

Arguments

  • polynomials: an array of polynomials. Supports polynomials from AbstractAlgebra.jl, Nemo.jl, and DynamicPolynomials.jl.

Returns

  • dimension: an integer, the dimension.

Example

Using AbstractAlgebra.jl:

using Groebner, Nemo
R, (x, y) = QQ["x", "y"]
dimension([x*y^2 + x, y*x^2 + y])

Notes

  • The function is thread-safe.

  • For AbstractAlgebra.jl and Nemo.jl, the function is most efficient for polynomials over GF(p), Native.GF(p), and QQ.

quotient_basis
fn

quotient_basis(polynomials; options...)

Returns a monomial basis of the quotient algebra of a zero-dimensional ideal.

If the input is not a Groebner basis, computes a Groebner basis. If the input is not a zero-dimensional ideal, an error is raised.

Arguments

  • polynomials: an array of polynomials. Supports polynomials from AbstractAlgebra.jl, Nemo.jl, and DynamicPolynomials.jl.

Returns

  • basis: an array of monomials, a quotient basis.

Possible Options

  • ordering: Specifies the monomial ordering. Available monomial orderings are:

    • InputOrdering() for inferring the ordering from the given polynomials (default),

    • Lex() for lexicographic,

    • DegLex() for degree lexicographic,

    • DegRevLex() for degree reverse lexicographic,

    • WeightedOrdering(weights) for weighted ordering,

    • ProductOrdering(args...) for block ordering,

    • MatrixOrdering(matrix) for matrix ordering.

    For details and examples see the corresponding documentation page.

Example

Using AbstractAlgebra.jl:

using Groebner, Nemo
R, (x, y) = QQ["x", "y"]
quotient_basis([x*y^2 + x, y*x^2 + y])

Notes

  • The function is thread-safe.

  • For AbstractAlgebra.jl and Nemo.jl, the function is most efficient for polynomials over GF(p), Native.GF(p), and QQ.

Monomial orderings

A list of all monomial orderings supported by Groebner.jl. An ordering can be set by passing it with the keyword argument ordering. See below for some examples.

⚠ Note
Some frontends, for example, AbstractAlgebra.jl, may not support weighted/product/matrix orderings from Groebner.jl. In such cases, the basis is computed in the ordering requested by user, but the terms of polynomials in the output are ordered w.r.t. some other ordering that is supported by the frontend.

Lex

Lex()
Lex(variables)
Lex(variables...)

Lexicographical monomial ordering.

We use the definition from Chapter 1, Computational Commutative Algebra 1, by Martin Kreuzer, Lorenzo Robbiano.

DOI: https://doi.org/10.1007/978-3-540-70628-1.

Dura Lex, sed Lex.

Example

using Groebner, AbstractAlgebra
R, (x, y) = QQ["x", "y"];

# Lexicographical ordering with x > y
groebner([x*y + x, x + y^2], ordering=Lex())

# Lexicographical ordering with y > x
groebner([x*y + x, x + y^2], ordering=Lex([y, x]))

# Lexicographical ordering with x > y
# Both syntax are allowed -- Lex([...]) and Lex(...)
groebner([x*y + x, x + y^2], ordering=Lex(x, y))

DegLex

DegLex()
DegLex(variables)
DegLex(variables...)

Degree lexicographical monomial ordering.

We use the definition from Chapter 1, Computational Commutative Algebra 1, by Martin Kreuzer, Lorenzo Robbiano.

DOI: https://doi.org/10.1007/978-3-540-70628-1.

Example

using Groebner, AbstractAlgebra
R, (x, y) = QQ["x", "y"];

# Degree lexicographical ordering with x > y
groebner([x*y + x, x + y^2], ordering=DegLex())

# Degree lexicographical ordering with y > x
groebner([x*y + x, x + y^2], ordering=DegLex([y, x]))

DegRevLex
st

DegRevLex()
DegRevLex(variables)
DegRevLex(variables...)

Degree reverse lexicographical monomial ordering.

We use the definition from Chapter 1, Computational Commutative Algebra 1, by Martin Kreuzer, Lorenzo Robbiano.

DOI: https://doi.org/10.1007/978-3-540-70628-1.

Example

using Groebner, AbstractAlgebra
R, (x, y) = QQ["x", "y"];

# Degree reverse lexicographical ordering with x > y
groebner([x*y + x, x + y^2], ordering=DegRevLex())

# Degree reverse lexicographical ordering with y > x
groebner([x*y + x, x + y^2], ordering=DegRevLex(y, x))

InputOrdering
st

InputOrdering()

Preserves the monomial ordering defined on the input polynomials.

This is the default value for the ordering keyword argument.

Example

using Groebner, AbstractAlgebra
R, (x, y) = QQ["x", "y"]

# Uses the ordering `InputOrdering`, which, in this case, 
# defaults to the lexicographical ordering with x > y
groebner([x*y + x, x + y^2])

WeightedOrdering
st

WeightedOrdering(weights)

Weighted monomial ordering.

Only positive weights are supported.

Example

using Groebner, AbstractAlgebra
R, (x, y) = QQ["x", "y"];

# x has weight 3, y has weight 1
ord = WeightedOrdering(x => 3, y => 1)
groebner([x*y + x, x + y^2], ordering=ord)

ProductOrdering
str

ProductOrdering(ord1, ord2)

Product monomial ordering. Compares by ord1, breaks ties by ord2.

Can also be constructed with *.

Example

using Groebner, AbstractAlgebra
R, (x, y, z, w) = QQ["x", "y", "z", "w"];

# Ordering with x, y > w, z
ord = ProductOrdering(DegRevLex(x, y), DegRevLex(w, z))
groebner([x*y + w, y*z - w], ordering=ord)

It is possible to use the * operator:

using Groebner, AbstractAlgebra
R, (x, y, z, t) = QQ["x", "y", "z", "t"];

ord1 = Lex(t)
ord2 = DegRevLex(x, y, z)
# t >> x, y, z
ord = ord1 * ord2
groebner([x*y*z + z, t * z - 1], ordering=ord)

MatrixOrdering
st

MatrixOrdering(matrix)
MatrixOrdering(Vector{Vector})

Matrix monomial ordering.

Example

using Groebner, AbstractAlgebra
R, (x, y, z, w) = QQ["x", "y", "z", "w"];

# the number of columns equal to the number of variables
ord = MatrixOrdering(
    [x,y,z,w],
    [
    1 0  0  2;
    0 0  1  2;
    0 1  1  1;
    ])
groebner([x*y + w, y*z - w], ordering=ord)

Learn and Apply

groebner_learn
fn

groebner_learn(polynomials; options...)

Computes a Groebner basis of the ideal generated by polynomials and emits a trace.

The trace can be used to speed up the computation of Groebner bases of specializations of the same ideal as the one groebner_learn had been applied to.

See also groebner_apply!.

Arguments

  • polynomials: an array of polynomials. Must be polynomials from AbstractAlgebra.jl or Nemo.jl over GF(p) or Native.GF(p).

Returns

Returns a tuple (trace, basis).

  • trace: an object, a trace. Can be used in groebner_apply!.

  • basis: an array of polynomials, a Groebner basis.

Possible Options

Same as for groebner.

Example

Using groebner_learn and groebner_apply! over the same ground field:

using Groebner, AbstractAlgebra
R, (x, y) = GF(2^31-1)["x", "y"]

# Learn
trace, gb_1 = groebner_learn([x*y^2 + x, y*x^2 + y])

# Apply (same support, different coefficients)
flag, gb_2 = groebner_apply!(trace, [2x*y^2 + 3x, 4y*x^2 + 5y])

@assert flag

Using groebner_learn and groebner_apply! over different ground fields:

using Groebner, AbstractAlgebra
R, (x, y) = GF(2^31-1)["x", "y"]

# Learn
trace, gb_1 = groebner_learn([x*y^2 + x, y*x^2 + y], ordering=DegRevLex())

# Create a ring with a different modulo
R2, (x2, y2) = GF(2^30+3)["x", "y"]

# Apply (different modulo)
flag, gb_2 = groebner_apply!(
    trace, 
    [2x2*y2^2 + 3x2, 4y2*x2^2 + 5y2], 
    ordering=DegRevLex()
)

@assert flag
@assert gb_2 == groebner([2x2*y2^2 + 3x2, 4y2*x2^2 + 5y2], ordering=DegRevLex())

Using groebner_apply! in batches:

using Groebner, AbstractAlgebra
R, (x, y) = polynomial_ring(GF(2^31-1), ["x", "y"], internal_ordering=:degrevlex)

# Learn
trace, gb_1 = groebner_learn([x*y^2 + x, y*x^2 + y])

# Create rings with some other moduli
R2, (x2, y2) = polynomial_ring(GF(2^30+3), ["x", "y"], internal_ordering=:degrevlex)
R3, (x3, y3) = polynomial_ring(GF(2^27+29), ["x", "y"], internal_ordering=:degrevlex)

# Two specializations of the same ideal
batch = ([2x2*y2^2 + 3x2, 4y2*x2^2 + 5y2], [4x3*y3^2 + 4x3, 5y3*x3^2 + 7y3])

# Apply for two sets of polynomials at once
flag, (gb_2, gb_3) = groebner_apply!(trace, batch)

@assert flag
@assert (gb_2, gb_3) == map(groebner, batch)

Perhaps, in a more involved example, we will compute Groebner bases of the Katsura-9 system:

using Groebner, AbstractAlgebra, BenchmarkTools

# Create the system
kat = Groebner.Examples.katsuran(9, k=ZZ, internal_ordering=:degrevlex)

# Reduce the coefficients modulo 5 different primes
kat_0 = map(f -> map_coefficients(c -> GF(2^30 + 3)(c), f), kat)
kat_1 = map(f -> map_coefficients(c -> GF(2^30 + 7)(c), f), kat)
kat_2 = map(f -> map_coefficients(c -> GF(2^30 + 9)(c), f), kat)
kat_3 = map(f -> map_coefficients(c -> GF(2^30 + 15)(c), f), kat)
kat_4 = map(f -> map_coefficients(c -> GF(2^30 + 19)(c), f), kat)

# Learn the trace
trace, gb_0 = groebner_learn(kat_0);

# Compare the performance of applying with 1 input and with 4 different inputs:

# Apply for one system
@btime groebner_apply!($trace, $kat_1);
#  46.824 ms (19260 allocations: 24.48 MiB)

# Apply for a batch of four systems
@btime groebner_apply!($trace, $(kat_1, kat_2, kat_3, kat_4));
#  72.813 ms (23722 allocations: 59.44 MiB)

Observe the better amortized performance of the composite groebner_apply!.

Notes

  • The function is thread-safe.

groebner_apply!
fn

groebner_apply!(trace, polynomials; options...)
groebner_apply!(trace, batch::NTuple{N, Vector}; options...)

Computes a Groebner basis of the ideal generated by polynomials following the given trace.

See also groebner_learn.

Arguments

  • trace: a trace produced by groebner_learn.

  • polynomials: an array of polynomials. Must be polynomials from AbstractAlgebra.jl or Nemo.jl over GF(p) or Nemo.GF(p). It is possible to supply a tuple of N arrays of polynomials to compute N Groebner bases simultaneously. This could be more efficient overall than computing them in separate.

Returns

Returns a tuple (success, basis).

  • success: a bool, whether the call succeeded.

  • basis: an array of polynomials, a Groebner basis.

Possible Options

The groebner_apply! function automatically inherits most parameters from the given trace.

Example

For examples, see the documentation of groebner_learn.

Notes

  • In general, success may be a false positive. The probability of a false positive is considered to be low enough in some practical applications.

  • This function is not thread-safe since it mutates trace.

  • This function is not safe against program interruptions. For example, pressing Ctrl + C while groebner_apply!(trace, ...) is running may leave trace corrupted.

Low-level interface

Some functions in the interface have a low-level entry point. Low-level functions accept and output ''raw'' exponent vectors and coefficients. This could be convenient when one does not want to depend on a frontend.

For example,

using Groebner
# define {x y - 1, x^3 + 7 y^2} modulo 65537 in DRL
ring = Groebner.PolyRing(2, Groebner.DegRevLex(), 65537)
monoms = [ [[1, 1], [0, 0]], [[3, 0], [0, 2]] ]
coeffs = [ [1, -1], [1, 7] ]
# compute a GB
gb_monoms, gb_coeffs = Groebner.groebner(ring, monoms, coeffs)
(Vector{Vector{UInt32}}[[[0x00000001, 0x00000001], [0x00000000, 0x00000000]], [[0x00000000, 0x00000003], [0x00000002, 0x00000000]], [[0x00000003, 0x00000000], [0x00000000, 0x00000002]]], Vector{UInt32}[[0x00000001, 0x00010000], [0x00000001, 0x00004925], [0x00000001, 0x00000007]])

The list of functions that provide a low-level entry point: groebner, normalform, isgroebner, groebner_learn, groebner_apply.

The low-level functions may be faster than their user-facing analogues since they bypass internal checks and conversions. Low-level functions do not make any specific assumptions, that is, all of these are correctly handled in the input: unsorted monomials, nonnormalized coefficients, duplicate terms, aliasing memory.

Generic coefficients

Julia grants us the ability to write generic code. One consequence of that for Groebner.jl is that it can compute Groebner bases over anything that behaves like a field.

For some ground fields Groebner.jl runs an efficient native implementation:

For other ground fields, it runs a possibly slower generic fallback. In this case, coefficients of polynomials are treated as black-boxes, which implement field operations: zero, one, inv, ==, +, *, -.

For example, we can compute a Groebner basis over a univariate rational function field over a finite field:

using Groebner, AbstractAlgebra

R, t = GF(101)["t"]
ff = fraction_field(R)
_, (x, y) = ff["x","y"]

sys = [(t//t+1)*x*y - t^3, y^2 + t]

gb = groebner(sys)
2-element Vector{AbstractAlgebra.Generic.MPoly{AbstractAlgebra.Generic.FracFieldElem{AbstractAlgebra.Generic.Poly{AbstractAlgebra.GFElem{Int64}}}}}:
 y^2 + t
 x + 51*t^2*y